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Fig. 1: IFG enables the generation of dexterous, functional grasps in cluttered, realistic scenes. It first uses a vision-language model to identify
task-relevant regions on objects, then uses geometrically precise force closure in simulation to ground the finger joints. The resulting dataset,
and the diffusion model trained on it, encode both semantic and geometric understanding of the scene without any hand-collected data.

Abstract—Large Vision Models trained on internet-scale data
have demonstrated strong capabilities in segmenting and seman-
tically understanding object parts, even in cluttered, crowded
scenes. However, while these models can direct a robot toward the
general region of an object, they lack the geometric understanding
required to precisely control dexterous robotic hands for 3D
grasping. To overcome this, our key insight is to leverage
simulation with a force-closure grasping generation pipeline that
understands local geometries of the hand and object in the
scene. Because this pipeline is slow and requires ground-truth
observations, the resulting data is distilled into a diffusion model
that operates in real-time on camera point clouds. By combining
the global semantic understanding of internet-scale models with
the geometric precision of a simulation-based locally-aware force-
closure, IFG achieves high-performance semantic grasping without
any manually collected training data. For visualizations of this
please visit our website at https://ifgrasping.github.io/

I. INTRODUCTION

Recent advances in vision-language models (VLMs) have
led to impressive results across a range of perception tasks,
including image captioning, visual question answering, and
open-world object recognition. Trained on large-scale datasets
pairing images with natural language, these models exhibit a
strong ability to align visual and linguistic information, enabling
semantic understanding that generalizes across diverse contexts.
This success has inspired interest in leveraging VLMs for
robotics applications such as instruction following, semantic
goal specification, and high-level planning.

*These authors contributed equally.
Correspondence to: muxinl@andrew.cmu.edu and kshaw2@andrew.cmu.edu

While these initial applications show promise, significant lim-
itations remain. Most notably, current VLMs lack a grounded
understanding of physical space—they cannot reason about 3D
geometry, spatial relationships, or the dynamics of physical
interaction. Consequently, they struggle with planning or
executing precise motor actions in the real world. Although
VLMs can identify and describe visual content, they do not
inherently understand how to interact with it. This disconnect
between perception and control poses a major challenge in
robotic grasping systems.

We seek an approach that avoids manual data collection
methods like teleoperation while enabling this geometric
understanding. A promising direction involves synthetic grasp
generation frameworks, which produce large datasets of grasp
poses through an optimization process guided by energy
functions that approximate force closure, along with evaluation
pipelines in simulation. These datasets are often used to train
diffusion-based grasp samplers. However, a significant portion
of the generated grasps are physically implausible or unnatural.
Because grasp proposals are initialized by sampling points
around the object’s convex hull, many grasps target physically
inaccessible or unsuitable regions.

Moreover, downstream manipulation tasks require the hand to
interact with specific, task-relevant regions of objects such as a
handle or button. Existing synthetic grasping pipelines generate
grasps indiscriminately over the object surface, leading datasets
that are poorly aligned with the needs of task-conditioned
manipulation.

Our approach addresses this gap by combining the high-level
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Fig. 2: IFG takes an object mesh and a task prompt as input. To incorporate semantic understanding, it renders the object from multiple
viewpoints, applies a VLM-based segmentation model combining SAM[1] and VLPart[2], and reprojects the results into 3D space to identify
task-relevant regions. For geometric grounding, it initializes a force closure objective at these regions and optimizes for functional grasps. The
resulting data is then used to train a diffusion model for fast grasp synthesis from depth.

semantic understanding of VLMs with physically grounded,
task-aware synthetic grasping generation. To this end, we
propose a pipeline that first translates semantic input specifying
a task into predictions of useful regions on objects using a
VLM. Then, we seed the grasp generation process with this
prior to enable semantic-guided grasp synthesis, producing
stable, natural grasps aligned with the demands of the task. Our
pipeline is highly parallelizable, efficient, and compatible with
arbitrary objects, scenes (including cluttered environments),
and dexterous hands. This pipeline generates semantically
meaningful grasps without any teleoperation or video data.

II. RELATED WORKS

A. Dexterous Grasping Generation in Simulation

GraspIt! adapts Eigengrasps from a manual database for
fast grasp planning, but it doesn’t generalize to any object
category [4]. Similarly, [5] also uses shape augmentations. A
line of works optimize for grasps contacts using differentiable
simulation [6, 7, 8, 9] or by matching hand-object geometry
[9]. DexGraspNet and its follow-up initialize the hand poses
in the convex hull of the object and then optimize using the
force closure objective [10, 11]. We use this objective function
to generate grasps as well in IFG. Concurrently developed
with our work, [12] uses VLMs [13, 14] to produce semantic
regions for grasp generation.

Many grasping pipelines use the data generated to train
neural network models. These models can aid in faster
generation, the removal of privileged information, or enable
generalization. Many use a VAE model [15] to enable this
faster generation [11, 16, 17, 18, 19]. Other newer works use
the more powerful diffusion model [20] to improve results. [3]
To remove the reliance on privileged geometry, point-cloud
conditioning with Pointnet [21, 22] are used [23]. A parallel
technique is NeRF [19]. Finally, some use quick test time
adaptation to improve the grasping quality past the learned
model [24, 16].

B. Vision-based Dexterous Grasping

Instead of generating grasps in simulation there are many
datasets that have human hand and object interaction in them.
Some datasets have ground truth data using motion capture
devices [25, 26] but are more limited in size and variety of
grasps [27, 28]. Adding contact information between the object
and the hand can help with fine-grained control [29, 30, 31].
While there are larger datasets available, [32, 33], they do
not have ground truth hand and object poses. This means that
vision methods must be used to extract this, which works in
varying accuracy [34, 35, 36]. Once extracted, these grasps
can be used in robot hand systems.

A wide range of recent studies have tapped into large-
scale human activity datasets to improve various aspects of
robot learning. Some focus on deriving cost functions from
human behavior [37, 38, 39, 40], while others map human
and robot actions to one another [41, 42, 43], whether through
aligned demonstrations [44, 45, 46], unaligned examples [47],
or direct action correspondences [48]. In addition, the inherent
structure of certain datasets—such as those involving tool
use [49], or temporal sequences of hand-object interactions
[50, 51]—has been used to infer actions or detect salient
features like keypoints.

C. VLMs for Robotic Grasping

Recent works have explored integrating large-scale models
with robotic grasping, particularly for two-finger grippers. For
example, [52] and [53] extract affordances and constraints
from LLMs and VLMs to build 3D value maps, which are then
used by motion planners to synthesize trajectories in a zero-
shot manner. Similarly, [54] incorporates large-scale models
but relies on simulation to train downstream policies. Other
approaches [55, 56, 57] generate vision-language-action (VLA)
representations or language-based plans that can be executed
on robotic systems.



Fig. 3: Compared to Get a Grip’s synthetic grasp generation method, our method produces more human-like grasps. For instance, Get a Grip
often grasp on the bottom of the bottle, while our method knows to robustly grasp the neck. Please see our website for 3D visualizations.

III. METHOD

The goal of IFG is to learn a general-purpose dexterous
grasping affordance model that takes as input a scene point
cloud and a text prompt specifying the object to grasp, and
outputs a feasible grasp for a robot hand. To enable this, we
must first generate a large grasping dataset with geometrically
accurate and semantically meaningful grasps. As shown in
Figure 2, given an object mesh and a task prompt, our data
generation pipeline identifies task-relevant regions by rendering
the object from multiple viewpoints, applying a VLM-based
segmentation model, and reprojecting the results into 3D. These
semantic regions then guide a grasp optimization process
that enforces both stability and functional relevance. The
resulting diverse set of robust grasps is distilled into a diffusion
model that predicts executable grasps directly from depth
input, enabling fast and deployable grasp synthesis in real-
world scenarios. We present the pseudocode of our method in
Algorithm 1.

A. Dexterous Grasp Formulation

We formulate dexterous grasps as follows. A dexterous grasp
g is defined as g = (T,R, θ), where T ∈ R3 and R ∈ SO(3)

Fig. 4: To enable real-world deployment, the generated grasp data
is distilled into a diffusion model. This model is conditioned on a
Basis Point Set (BPS) computed from depth camera data, along with a
noisy grasp input. Through the denoising process, the model produces
refined grasps on the object. The architecture of the diffusion model
follows a similar design to DexDiffuser [3].

represent the translation and rotation of the wrist pose, and
θ ∈ RDoF denotes the joint angles of the hand (DoF = 16 for
LEAP Hand [58]).

B. Useful Region Proposal
IFG leverages knowledge from a VLM f to identify

objects of interest and part-level useful regions. To extract
2D semantic knowledge to 3D scenes, we also use a language-
conditioned segmentation model g to isolate the object and
a part-level segmentation model h to identify regions of
interest on the object. Given an object mesh O with k
faces F = {f (1), ..., f(k)}, we take a set of n RGB images
V = {v(1), . . . , v(n)} from angles uniformly sampled on a
camera initialization surface S. For single object settings S
is a spherical surface, and for clustered scenes it is the dome
segmented from a sphere to avoid visual occlusion. A VLM
is prompted with V to produce m semantic labels of useful
regions of O denoted as f(V ) = R = {r1, . . . , rm}. For each
label pi ∈ P , g and h together produces part-level segmentation
masks for each image in V conditioned on ri, represented as
h ◦ g(ri) = Si = {s(1)i , . . . , s

(n)
i }, where s

(j)
i segments the

regions of v(m) that belong to ri. We use SAM [1] as the
object segmentation model and VLPart [2] as the part-level
segmentation model.

The 2D segmentation masks Si are deprojected back to 3D
points on the object mesh Pi = {p(1)i , . . . , p

(n)
i }. However,

from certain camera angles a part may be occluded, leading to
incorrect segmentation. To address this, Pi further undergoes
heuristic-based filtering.

A two-means based clustering process assigns each pi to
one of two groups based on the size of its segmentation mask
si in terms of masked pixel number to filter out unsuccessful
segmentation masks. The larger group from the clustering
process P̂i is considered the valid deprojected points. Each
point is then associated with the closest face on the object
mesh to produce a tally of face counts Ti = {t(1)i , ..., t

(k)
i },

where t
(j)
i ∈ N. A voting algorithm selects the 60% top faces

of the object mesh as the useful region of the object used for
the next stage, which we refer to as U .

C. Geometric Grasp Synthesis
We compute the segmented convex hull of the object to

include only faces projected from U . For each grasp, the hand

https://ifgrasping.github.io/


is initialized on the inflated convex hull by farthest point
sampling with random noise added to the pose and finger joint
angles. An optimization process performs gradient descent
against an energy term

E = Efc + wdisEdis + wjointsEjoints + wpenEpen + wspenEspen

where Efc approximates force closure of the grasp, Edis
encourages hand-object proximity, based on the contact points
of the hand, Ejoints, Epen, and Espen respectively penalizes joint
violations, hand-object penetration, and self-penetration of the
hand. For the single object setting, we exclude the tabletop by
setting wspen = 0 to produce more diverse grasps. This pipeline
is similar to Get a Grip’s synthetic pipeline except for a few
key modifications. Instead of using precision grasps, which
sample contact points only on the fingertips of the hand, we
use power grasps by sampling over the inside regions of all
fingers, which produce more stable grasps and thus yield a
higher success rate. For each grasp, we initialize hand positions
on the segmented convex hull instead of the entire hull.

D. Simulation Evaluation

To ensure the robustness of generated grasps, we perform
tasks with them in a simulation environment. Each evaluation
proceeds in three phases: (1) the grasp and object are initialized
in a simulation environment, (2) fingers are closed to secure
the object, and (3) task execution is performed. Following Get
a Grip, we use a smooth label for each grasp by applying
slight perturbations on the finger joint angles to produce d
associating grasps, all of which are evaluated in simulation. The
hard success rates of all d+ 1 grasps are averaged to produce
the smooth label for the grasp. Grasps with low success rates
are filtered out to produce a dataset G of robust, force-closure
power grasps. For our experiments, d = 5.

E. Diffusion Model Distillation

While the grasping pipeline can generate numerous candidate
grasps from an object mesh, it is not directly deployable in real-
world scenarios due to practical constraints. The generation
process is quite slow, object mesh is not readily available, and
the generation process often does not always return successful
grasps. Inspired by [3], our diffusion model takes as input a
Basis Point Set (BPS) which is a structured point cloud that
can be readily obtained from the object mesh using a depth
camera [59]. Additionally, the model receives a noisy grasp
hypothesis. Through the denoising process, the diffusion model
refines this noisy input into a feasible and executable grasp.
This downstream diffusion model inherits both the geometric
reasoning capabilities of the training pipeline and the semantic
understanding provided by the vision-language model (VLM),
as illustrated in Figure 4.

IV. EXPERIMENTAL SETUP

Datasets of grasps are generated on diverse objects in
both single-object and clustered-scene settings, followed by
extensive simulation to evaluate robustness. The evaluation
addresses four key questions: (1) Can robust and stable grasps

Algorithm 1 IFG

Require: VLM f , segmentation models g, h, object mesh
O with faces F = {f (1), . . . , f (k)}, n views V =
{v(1), . . . , v(n)} from camera surface S
Semantic Segmentation Region Extraction

1: Query VLM: R = f(V ) = {r1, . . . , rm} semantic labels
2: for each label ri ∈ R do
3: Obtain masks Si = h ◦ g(ri) = {s(1)i , ..., s

(n)
i }

4: Deproject masks: Pi = {p(1)i , ..., p
(n)
i }

5: Filter Pi with two-means clustering by mask size
6: Map filtered points P̂i to nearest faces, tally counts Ti

7: end for
8: Select top 60% faces U ⊆ F as useful regions

Geometric Grasp Synthesis
9: Build convex hull from U ; inflate for sampling

10: for each grasp initialization do
11: Place hand on hull via farthest point sampling +

random noise
12: Optimize energy

E = Efc +wdisEdis +wjointsEjoints +wpenEpen +wspenEspen

13: Obtain candidate grasp
14: end for

Simulation Evaluation
15: for each grasp do
16: Generate d perturbed grasps by varying joint angles
17: Simulate Lift / Pick & Shake tasks in IsaacGym
18: Assign smooth label as mean success over d+ 1 trials
19: end for
20: Filter grasps with low success → G

Object GET A GRIP OURS

water bottle 49.1 62.8
large detergent bottle 51.2 62.5
spray bottle 43.1 54.5
pan 48.1 52.1
small lamp 56.8 85.7
spoon 42.7 50.9
vase 32.2 55.9
hammer 45.8 45.8
shark plushy 19.8 25.1

TABLE I: A selection of individual success rates out of the 35 objects
we generate on in single-object scenes. Ours generation outperforms
the baseline Get a Grip [19] due to improved grasp initializations
from the VLM.

be produced on individual objects? (2) In clustered scenes,
can the object of interest be identified and grasped without
collision? (3) Do the resulting grasps exhibit natural, human-
like qualities suitable for functional manipulation? (4) To what
extent does semantic, part-level conditioning via segmentation
improve grasp robustness and naturalness?

Task Setup. Two evaluation settings are considered. In
the single-object case, 24 diverse objects from Get a Grip’s
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Fig. 5: Single Object evaluation in the Lift and Pick and Shake Task.
Ours outperforms on the top three segmentation prompts compared to
the Get a Grip baseline generation process due to the guidance that
the prompt and the VLM provide on the grasping generation process.

dataset are used; each object is sampled at 5 scales, with
200 grasps generated by both our method and the baseline.
For clustered scenes, 35 dense scenes from DexGraspNet2
are selected. Each scene contains on average 3–4 objects,
with 3–4 segmentation prompts per object, and 200 grasps
generated for each prompt–object pair. Baselines sample 256
grasps per scene. All objects are drawn from common daily
manipulation tasks, and all grasps are executed using the LEAP
Hand [58]. Finally, a diffusion model is trained to verify that
the generated grasps can be distilled into a policy operating
directly on proprioceptive data obtainable in the real-world.
Please also see our website at https://ifgrasping.github.io/ for
more visualizations of these results.

Simulation Evaluation. We test our grasps in IsaacGym
[60]. For the single-object setting, two tasks are designed:
Lift, which raises the wrist vertically to test grasp firmness,
and Pick & Shake, which lifts the object slightly and applies
perturbations to the wrist. A task is considered successful if
the object’s relative pose to the palm remains stable throughout
execution. Collision checking is enforced during the entire
process. For clustered scenes, we evaluate grasps only on the
Lift task, since shaking in a dense environment often leads to
trivial collisions.

Method Pick & Shake (%) Lift (%)

Ours 16.14 51.11
Get a Grip 11.82 50.93

TABLE II: Single-object grasp generation evaluation in Isaac Gym.
Our method outperforms Get a Grip by leveraging VLM-based part-
level awareness. Successful grasps are filtered and used to train the
diffusion model.

Method Lift (%)

Ours 32.23
GraspTTA 25.64
ISAGrasp 32.51
DexGraspNet2 36.71

TABLE III: IFG can generate grasps with similar lift success rates to
baseline models trained on preprocessed and filtered DexGraspNet2’s
Dataset, showing our strong grasp generation capabilities.

V. RESULTS

A. Single Object Grasping

A useful grasp is not only robust but also natural, both of
which can be achieved through our method. To demonstrate
this, we evaluate our method against Get a Grip [19] on 35
diverse objects from their dataset used in daily scenarios. To
assess robustness, grasps are evaluated in simulation under
two tasks, Pick & Shake and Lift. As illustrated in Table II,
IFG achieves higher success rates on both tasks, demonstrating
that conditioning grasp generation on part-level segmentation
produces more robust grasps. Table I further presents detailed
success rates of a diverse set of objects from our data. Moreover,
from qualitative comparisons, our grasps are more natural:
they are concentrated on the object regions that humans
typically interact with in real-world use, while many of Get
a Grip’s grasps that pass simulation checks are not aligned
with functional usage due to the absence of guidance during
initialization. Shown in Figure 3, their grasps tend to grasp
the head of a hammer since it covers a high percentage of
the convex hull, while our grasps initialized on the segmented
convex of the handle are functionally correct. With our method
outperforming the baseline on both robustness and naturalness,
we hypothesize that semantically conditioned grasps improve
robustness because everyday objects are designed with affor-
dances that support secure functional grasping, and semantic
conditioning aligns grasp generation with these regions.

B. Multi-object Dense Scene Grasping

Daily scenarios are often not so simple as single object
settings because they involve many clustered objects. A grasp
proposal pipeline must therefore be able to identify the object of
interest and generate firm grasps while avoiding collision with
others. Get a Grip does not address multi-object scenes, so we
compare against the crowded scene grasp generation models in
DexGraspNet2 [11]. DexGraspNet2 retargets GraspNet-1Billion
data [17] into a diffusion model and adapts several single-
object networks as baselines. Their approach ranks points on
the scene point cloud with an MLP to propose grasp seeds,
but cannot control which object is grasped. In addition, their
ranking method tends to be biased toward easy targets, as
shown in Figure 6. In contrast, our method selects via semantic
segmentation prompts and avoids overfitting to easy-to-grasp
regions. We evaluate IFG on clustered, dense scenes with harder
objects from DexGraspNet2. Figure 1 shows our grasps on
four scenes on the sides. Impressively, our synthetic generation
method achieves a similar success rate compared to the baseline

https://ifgrasping.github.io/


Object DEXGRASPNET2 GRASPTTA ISAGRASP OURS

Tomato Soup Can 47.8 38.3 52.0 45.5
Mug 33.2 26.9 22.6 60.4
Drill 32.1 20.8 36.4 57.5
Scissors 9.7 0.0 33.7 20.2
Screw Driver 0.0 8.3 40.0 22.0
Shampoo Bottle 50.6 25.4 18.8 53.1
Elephant Figure 23.6 29.6 24.2 35.8
Peach Can 61.8 28.0 55.3 60.3
Face Cream Tube 32.1 22.5 20.7 35.5
Tape Roll 22.7 13.9 9.8 43.2
Camel Toy 12.8 14.3 21.3 21.8
Body Wash 40.2 22.3 29.4 58.3

TABLE IV: Grasp success rates for crowded-scene evaluation on the lift task. The VLM enables IFG to focus on objects of interest and
exceeds them in performance compared to baselines [11, 18, 5]

.
models distilled from preprocessed and filtered data, which is
shown in Table III. A more detailed analysis done on individual
objects across scenes is shown in Table IV.

The differences between ours and DexGraspNet2’s reported
performance is due to two reasons. (1) both methods lift objects
by 20 cm, but DexGraspNet2 counts a grasp as successful if
the object rises just 3 cm, even if it slips onto nearby objects.
(2) More comprehensive testing: DexGraspNet2 reports only
the top-confidence grasp per scene, usually on easy-to-grasp
objects on the peripheral of the scene. We evaluate over 200
grasps per scene for their baselines. As shown in Figure 7,
on harder, we outperforms them on occluded, harder-to-grasp
objects that they grasp less frequently.

C. Grasp Generative Model

The method is modular, enabling plug-and-play replacement
of both the segmentation and generation modules. For grasp
generation, an attention-based conditional diffusion transformer
(DiT) is trained to produce grasps conditioned on the object’s
BPS [59] representation computed from its point cloud, follow-
ing an architecture similar to that used in Get a Grip. Grasps
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Fig. 6: When generating grasps, confidence-based methods generate
most of their grasps on the easiest-to-grasp object. On the other hand,
our method can be controlled to grasp any specific object due to
segmentation conditioning. Therefore the easiest object is grasped
less often.

generated by this model, trained on semantically meaningful
data, are compared against those produced by Get a Grip to
highlight the benefits of semantic conditioning. (The model is
trained on a single object at one scale, a bottle.)

VI. CONCLUSION AND LIMITATIONS

We introduced IFG, a pipeline that combines the semantic
understanding of vision-language models with the geometric
precision of force closure grasping to generate functional and
robust dexterous grasps. IFG harnesses internet-scale models
to identify task-relevant object regions from visual information,
uses them as semantic conditioning for energy based force
closure optimization, and leverages simulation evaluation as a
metric for robustness. As a result, IFG produces more natural
and effective grasps than prior methods, particularly in cluttered
environments. The resulting data is distilled into a diffusion
model, enabling real-time grasp prediction from camera input
without relying on hand-collected data.
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 with <10% Share (DexGraspNet2)

Fig. 7: DexGraspNet2’s grasp generation model avoids hard-to-grasp
objects. Our method concentrates more on these objects and achieves
a higher success rate due to functional guidance from VLM-based
segmentation.



Nonetheless, our work has limitations. First, our method
does not account for dynamic objects since our segmentation
is performed on images from a single timestep. Potential work
can be done on extending our semantic segmentation pipeline
for continuous video streaming. Additionally, our method is
not suited for scenarios where non-force closure grasps are
required. There is still much to be done in optimization based
dexterous grasp generation.
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